

Precision 8-Ch/Dual 4-Ch Low Voltage Analog Multiplexers

DESCRIPTION

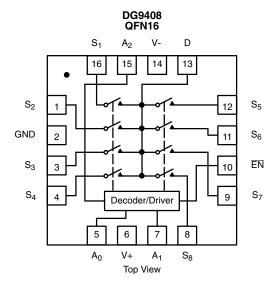
The DG9408, DG9409 uses BiCMOS wafer fabrication technology that allows the DG9408, DG9409 to operate on single and dual supplies. Single supply voltage ranges from 3 V to 12 V while dual supply operation is recommended with \pm 3 V to \pm 6 V.

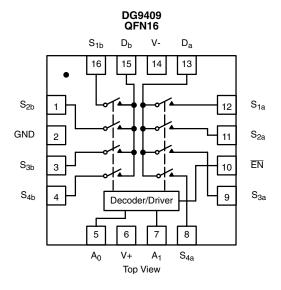
The DG9408 is an 8-channel single-ended analog multiplexer designed to connect one of eight inputs to a common output as determined by a 3-bit binary address (A₀, A₁, A₂). The DG9409 is a dual 4-channel differential analog multiplexer designed to connect one of four differential inputs to a common dual output as determined by its 2-bit binary address (A₀, A₁). Break-before-make switching action to protect against momentary crosstalk between adjacent channels.

As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with lead (Pb)-free device terminations. The DG9408, DG9409 are offered in a QFN package that has a nickel-palladiumgold device terminations and is represented by the lead (Pb)-free "-E4" suffix. The nickel-palladium-gold device terminations meet all the JEDEC standards for reflow and MSL ratings.

FEATURES

- Halogen-free According to IEC 61249-2-21 **Definition**
- 2.7 V to 12 V single supply or \pm 3 V to \pm 6 V dual supply operation
- Low on-resistance R_{ON} : 3.9 Ω typ.
- Fast switching: t_{ON} 42 ns, t_{OFF} 24 ns
- Break-before-make guaranteed
- Low leakage
- TTL, CMOS, LV logic (3 V) compatible
- 2000 V ESD protection (HBM)
- Compliant to RoHS Directive 2002/95/EC


BENEFITS


- High accuracy
- Single and dual power rail capacity
- Wide operating voltage range
- Simple logic interface

APPLICATIONS

- Data acquisition systems
- Battery operated equipment
- Portable test equipment
- Sample and hold circuits
- Communication systems
- SDSL, DSLAM
- Audio and video signal routing

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

RoHS HALOGEN FREE

TRUTH TABLES AND ORDERING INFORMATION

TRUTI	TRUTH TABLE DG9408							
A ₂	A ₁	A ₀	EN	On Switch				
Х	Х	Х	1	None				
0	0	0	0	1				
0	0	1	0	2				
0	1	0	0	3				
0	1	1	0	4				
1	0	0	0	5				
1	0	1	0	6				
1	1	0	0	7				
1	1	1	0	8				

TRUTH TABLE DG9409							
A ₁	A ₀	EN	On Switch				
Х	Х	1	None				
0	0	0	1				
0	1	0	2				
1	0	0	3				
1	1	0	4				

X = Don't care

For low and high voltage levels for V_{AX} and V_{EN} consult "Digital Control" Parameters for Specific V+ operation. See Specifications Tables for:

Single Supply 12 V

Dual Supply V+ = 5 V, V- = -5 V

Single Supply 5 V

Single Supply 3 V

ORDERING INFORMATION							
Temp. Range	Package	Part Number					
- 40 °C to 85 °C	16-pin QFN (4 mm x 4 mm)	DG9408DN-T1-E4					
- 40 °C to 85 °C	10-μιι ωι ν (4 ΙΙΙΙΙΙ Χ 4 ΙΙΙΙΙΙ)	DG9409DN-T1-E4					

Parameter	Limit	Unit	
Voltage Referenced V+ to V-	14	-	
GND	7	V	
Digital Inputs ^a , V _S , V _D	(V-) - 0.3 to (V+) + 0.3		
Current (Any Terminal Except S or D)	30		
Continuous Current, S or D	100	mA	
Peak Current, S or D (Pulsed at 1 ms, 10 % Dut	y Cycle max.)	200	
Package Solder Reflow Conditions ^d 16-pin (4 x 4 mm) QFN		240	°C
Storage Temperature	- 65 to 150	1	
Power Dissipation (Package) ^b , (T _A = 70 °C)	16-pin (4 x 4 mm) QFN ^c	1880	mW

Notes:

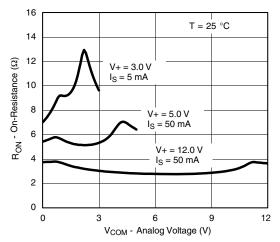
- a. Signals on SX, DX or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads soldered or welded to PC board.
- c. Derate 23.5 mW/°C above 70 °C.
- d. Manual soldering with soldering iron is not recommended for leadless components. The QFN is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

SPECIFICATIONS (Sin	gle Supply	/ 12 V)						
		Test Conditions Unless Otherwise Specifi V+ = 12 V, ± 10 %, V- = 0			Limits - 40 °C to 85 °C			
Parameter	Symbol	$V_A, V_{\overline{EN}} = 0.8 \text{ V or } 2.4 \text{ V}^1$		Temp.b	Min.c	Typ.d	Max.c	Unit
Analog Switch	-						·	
Analog Signal Range ^e	V _{ANALOG}			Full	0		12	V
On-Resistance	R _{ON}	$V+ = 10.8 \text{ V}, V_D = 2 \text{ V} \text{ or } 9 \text{ V}, I_S = $ sequence each switch on		Room Full		4	7 7.5	
R_{ON} Match Between Channels g	ΔR_{ON}			Room			3.6	Ω
On-Resistance Flatness ⁱ	R _{ON} Flatness	V+ = 10.8 V, V _D = 2 V or 9 V, I _S =	= 50 mA	Room			8	
Switch Off Leakage Current	I _{S(off)}	V _{EN} = 2.4 V, V _D = 11 V or 1 V, V _S =	1 V or 11 V	Room Full	- 2 - 15		2 15	
	$I_{D(off)}$	LN / B		Room Full	- 2 - 15		2 15	nA
Channel On Leakage Current	I _{D(on)}	$V_{\overline{EN}} = 0 \text{ V}, V_S = V_D = 1 \text{ V or } 1$	11 V	Room Full	- 2 - 15		2 15	
Digital Control						l	l	
Logic High Input Voltage	V _{INH}			Full	2.4			V
Logic Low Input Voltage	V_{INL}			Full			0.8	
Input Current	I _{IN}	$V_{AX} = V_{\overline{EN}} = 2.4 \text{ V or } 0.8 \text{ V}$	/	Full	- 1		1	μΑ
Dynamic Characteristics								
Transition Time	t _{TRANS}		$V_{S1} = 8 \text{ V}, V_{S8} = 0 \text{ V}, (DG9408)$ $V_{S1b} = 8 \text{ V}, V_{S4b} = 0 \text{ V}, (DG9409)$ see fig. 2			42	71 75	
Break-Before-Make Time	t _{BBM}	$V_{S(all)} = V_{DA} = 5 V$ see fig. 4		Room Full	2	24		ns
Enable Turn-On Time	t _{ON(ĒN)}	V _{AX} = 0 V, V _{S1} = 5 V (DG940 V _{AX} = 0 V, V _{S1b} = 5 V (DG940		Room Full		42	70 75	
Enable Turn-Off Time	$t_{OFF(\overline{EN})}$	see fig. 3		Room Full		24	44 46	
Charge Injection ^e	Q	$C_L = 1 \text{ nF, } V_{GEN} = 0 \text{ V, } R_{GEN} =$	= 0 Ω	Room		29		рC
Off Isolation ^{e, h}	OIRR	f = 100 kHz, R ₁ = 1 kΩ		Room		- 80		4B
Crosstalk ^e	X _{TALK}	1 - 100 KHZ, HL - 1 KS2		Room		- 85		dB
Source Off Capacitance ^e	C _{S(off)}	f = 1 MHz, V _S = 0 V, V _{EN} = 2.4 V	DG9408	Room		21		
Source On Oapaolianee	- 3(011)	, 3, - EIN	DG9409	Room		23		_
Drain Off Capacitance ^e	$C_{D(off)}$	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{\overline{EN}} = 2.4 \text{ V}$	DG9408 DG9409	Room Room		211 112		pF
Drain On Capacitance ^e	C _{D(on)}	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{\overline{EN}} = 0 \text{ V}$	DG9408 DG9409	Room Room		238 137		
Power Supplies			_ = = = = = = = = = = = = = = = = = = =	1			<u> </u>	
Power Supply Current	l+	$V_{\overline{EN}} = V_A = 0 \text{ V or V} +$		Room			1	μΑ

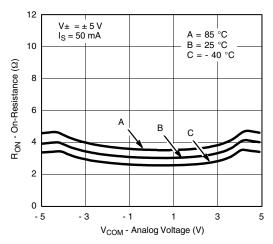
		Test Conditions Unless Otherwise Specifi V+ = 5 V, V- = - 5 V, ± 10 9			- 40	Limits °C to 85	5°C	
Parameter	Symbol	$V_A, V_{\overline{EN}} = 0.8 \text{ V or } 2 \text{ V}^f$	70	Temp.b	Min.c	Typ. ^d	Max.c	Unit
Analog Switch								
Analog Signal Range ^e	V _{ANALOG}			Full	- 5		5	V
On-Resistance	_	$V + = 4.5 \text{ V}, V - = -4.5 \text{ V}, V_D = \pm 3.5 \text{ V},$	I _S = 50 mA	Room		5	8	
On-Resistance	R _{ON}	sequence each switch on	1	Full			8.5	
R_{ON} Match Between Channels g	ΔR_{ON}			Room			3.6	Ω
On-Resistance Flatness ⁱ	R _{ON} Flatness	$V+ = 4.5 \text{ V}, V- = -4.5 \text{ V}, V_D = \pm 3.5 \text{ V},$	$I_S = 50 \text{ mA}$	Room			8.2	
	I _{S(off)}			Room	- 2		2	
Switch Off Leakage Current ^a	3(011)	V+ = 5.5 , V- = - 5.5 V	. 451/	Full	- 15		15	
	$I_{D(off)}$	$V_{\overline{EN}} = 2.4 \text{ V}, V_D = \pm 4.5 \text{ V}, V_S = \pm 4.5 \text{ V}$		Room Full	- 2 - 15		2 15	nA
		V+ = 5.5 V. V- = - 5.5 V		Room	- 2		2	
Channel On Leakage Current ^a	I _{D(on)}	$V_{\overline{EN}} = 0 \text{ V, } V_D = \pm 4.5 \text{ V, } V_S = \pm$	4.5 V	Full	- 15		15	
Digital Control		<u></u>		I.				
Logic High Input Voltage	V _{INH}			Full	2			V
Logic Low Input Voltage	V _{INL}			Full			0.8	V
Input Current ^a	I _{IN}	V _{AX} = V _{EN} = 2 V or 0.8 V		Full	- 1		1	μΑ
Dynamic Characteristics				I.				
Transition Time ^e	t _{TRANS}	$V_{S1} = 3.5 \text{ V}, V_{S8} = -3.5 \text{ V}, (DG)$ $V_{S1b} = 3.5 \text{ V}, V_{S4b} = -3.5 \text{ V}, (DG)$ see fig. 2		Room Full		68	89 94	
Break-Before-Make Time ^e	t _{BBM}	$V_{S(all)} = V_{DA} = 3.5 \text{ V}$ see fig. 4		Room Full	1	16		ns
Enable Turn-On Time ^e	$t_{ON(\overline{EN})}$	$V_{AX} = 0 \text{ V}, V_{S1} = 3.5 \text{ V} (DG94)$		Room Full		68	88 94	
Enable Turn-Off Time ^e	t _{OFF(EN)}	see fig. 3	$V_{AX} = 0 \text{ V}, V_{S1b} = 3.5 \text{ V (DG9409)}$ see fig. 3			58	78 81	
Source Off Capacitance ^e	C _{S(off)}	f = 1 MHz, V _S = 0 V, V _{EN} = 2 V	DG9408	Room		23		
	S(011)	2 2.11	DG9409	Room		23		
Drain Off Capacitance ^e	$C_{D(off)}$	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{\overline{EN}} = 2 \text{ V}$	DG9408 DG9409	Room		223 113		pF
	DG9408		DG9408	Room		246		
Drain On Capacitance ^e	$C_{D(on)}$	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{\overline{EN}} = 0 \text{ V}$ DG9409		Room		137		
Power Supplies			<u> </u>					
Power Supply Current	l+	$V_{\overline{FN}} = V_A = 0 \text{ V or V} +$		Room			1	μA
1 Ower Supply Surrent	I-	$v_{\overline{EN}} = v_A = 0 \text{ V or } v +$		Room	- 1			μΑ

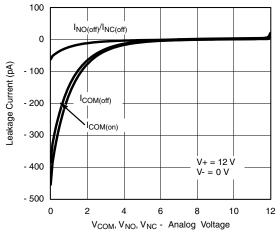
SPECIFICATIONS (S	ingle Supp	oly 5 V)						
		Test Conditions Unless Otherwise Specified V+ = 5 V, ± 10 %, V- = 0 V			- 40	Limits O °C to 85	i °C	
Parameter	Symbol	$V_A, V_{\overline{EN}} = 0.8 \text{ V or } 2 \text{ V}^f$		Temp.b	Min.c	Typ.d	Max.c	Unit
Analog Switch								
Analog Signal Range ^e	V _{ANALOG}			Full	0		5	V
On-Resistance	R _{ON}	$V+ = 4.5 \text{ V}, V_D \text{ or } V_S = 1 \text{ V or } 3.5 \text{ V}, I$	_S = 50 mA	Room Full		7	10.5 11	
R _{ON} Match Between Channels ^g	ΔR_{ON}	V+ = 4.5 V, V _D = 1 V or 3.5 V, I _S =	- 50 mA	Room			3.6	Ω
On-Resistance Flatness ⁱ	R _{ON} Flatness	v+=4.5 v, v _D =1 v oi 3.5 v, i _S =	- 50 IIIA	Room			9	
Switch Off Lookage Currenta	I _{S(off)}	V+ = 5.5 V		Room Full	- 2 - 15		2 15	nA
Switch Off Leakage Current ^a	I _{D(off)}	$V_S = 1 \text{ V or } 4 \text{ V}, V_D = 4 \text{ V or } 3 \text{ V}$	1 V	Room Full	- 2 - 15		2 15	
Channel On Leakage Current ^a	I _{D(on)}	$V_{+} = 5.5 \text{ V}$ $V_{D} = V_{S} = 1 \text{ V or } 4 \text{ V, sequence each switch on}$		Room Full	- 2 - 15		2 15	
Digital Control								
Logic High Input Voltage	V_{INH}	V+ = 5 V		Full	2			V
Logic Low Input Voltage	V_{INL}	-		Full			8.0	
Input Current ^a	I _{IN}	$V_{AX} = V_{\overline{EN}} = 2 \text{ V or } 0.8 \text{ V}$		Full	- 1		1	μΑ
Dynamic Characteristics								
Transition Time ^e	t _{TRANS}	$V_{S1} = 3.5 \text{ V}, V_{S8} = 0 \text{ V}, (DG94)$ $V_{S1b} = 3.5 \text{ V}, V_{S4b} = 0 \text{ V}, (DG94)$ see fig. 2		Room Full		73	94 104	
Break-Before-Make Time ^e	t _{OPEN}	$V_{S(all)} = V_{DA} = 3.5 \text{ V}$ see fig. 4		Room Full	2	29		ns
Enable Turn-On Time ^e	t _{ON(ĒN)}	V _{AX} = 0 V, V _{S1} = 3.5 V (DG94 V _{AX} = 0 V, V _{S1b} = 3.5 V (DG94		Room Full		74	94 104	
Enable Turn-Off Time ^e	t _{OFF(EN)}	see fig. 3		Room Full		38	57 61	
Charge Injection ^e	Q	$C_L = 1 \text{ nF, } R_{GEN} = 0 \text{ , } V_{GEN} =$	0 V	Room		20		рC
Off Isolation ^{e, h}	OIRR	$R_L = 1 \text{ k}\Omega, f = 100 \text{ kHz}$		Room		- 81		dB
Crosstalk ^e	X _{TALK}	<u>.</u>		Room		- 85		G D
Source Off Capacitance ^e	C _{S(off)}	$f = 1 \text{ MHz}, V_S = 0 \text{ V}, V_{\overline{EN}} = 0 \text{ V}$	DG9408 DG9409	Room Room		22 24		
Drain Off Capacitance ^e	C _{D(off)}	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{\overline{EN}} = 2 \text{ V}$	DG9408 DG9409	Room Room		223 113		pF
Drain On Capacitance ^e	C _{D(on)}	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{\overline{EN}} = 0 \text{ V}$	DG9408 DG9409	Room		244 143		
Power Supplies			1 2 2 2 2 2					
Power Supply Current	l+	$V_{\overline{EN}} = V_A = 0 \text{ V or V} +$		Room			1	μΑ

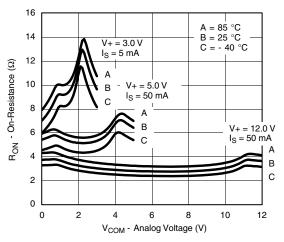
SPECIFICATIONS (Sir	ngle Suppl	y 3 V)						
		Test Conditions Unless Otherwise Specifi V+ = 3 V, ± 10 %, V- = 0 V			Limits - 40 °C to 85 °C			
Parameter	Symbol	$V_{\overline{EN}} = 0.4 \text{ V or } 1.8 \text{ V}^{f}$			Min.c	Typ.d	Max. ^c	Unit
Analog Switch	•			Temp.b				
Analog Signal Range ^e	V _{ANALOG}			Full	0		3	V
On-Resistance	R _{ON}	$V+ = 2.7 \text{ V}, V_D = 0.5 \text{ V or } 2.2 \text{ V}, I_{\xi}$	_S = 5 mA	Room Full		12	25.5 26.5	
R _{ON} Match Between Channels ^g	ΔR_{ON}	V+ = 2.7 V, V _D = 0.5 V or 2.2 V, I _I	o – 5 m∆	Room			3.6	Ω
On- Resistance Flatness ⁱ	R _{ON} Flatness	V = 2.7 V, V _D = 0.0 V 0. 2.2 V,	5 - 0 1111 (Room			13	
Switch Off Leakage Current ^a	I _{S(off)}	V+ = 3.3 V		Room Full	- 2 - 15		2 15	
Switch Off Leakage Current	I _{D(off)}	$V_S = 2 \text{ V or 1 V, } V_D = 1 \text{ or 2}$	2 V	Room Full	- 2 - 15		2 15	nA
Channel On Leakage Current ^a	I _{D(on)}	$V_D = V_S = 1 V \text{ or } 2 V, \text{ sequence eac}$	h switch on	Room Full	- 2 - 15		2 15	
Digital Control								
Logic High Input Voltage	V_{INH}			Full	1.8			V
Logic Low Input Voltage	V_{INL}			Full			0.4	·
Input Current ^a	I _{IN}	$V_{AX} = V_{\overline{EN}} = 1.8 \text{ V or } 0.4 \text{ V}$	$V_{AX} = V_{\overline{EN}} = 1.8 \text{ V or } 0.4 \text{ V}$		- 1		1	μΑ
Dynamic Characteristics								
Transition Time	t _{TRANS}	$V_{S1} = 1.5 \text{ V}, V_{S8} = 0 \text{ V}, (DG9-V_{S1b} = 1.5 \text{ V}, V_{S4b} = 0 \text{ V}, (DG8-V_{S1b} = 0.5 \text{ V}, V_{S4b} = 0.5 \text{ V}, (DG8-V_{S4b} = 0.5 \text{ V}, (DG8-V_{S4b} = 0.5 \text{ V}, V_{S4b} = 0.5 \text{ V}, (DG8-V_{S4b} = 0.5 \text{ V}, V_{S4b} = 0.5 \text{ V}, (DG8-V_{S4b} = 0.5 \text{ V}, V_{S4b} = 0.5 \text{ V}, (DG8-V_{$	$V_{S1} = 1.5 \text{ V}, V_{S8} = 0 \text{ V}, (DG9408)$ $V_{S1b} = 1.5 \text{ V}, V_{S4b} = 0 \text{ V}, (DG9409)$ see fig. 2			140	165 182	
Break-Before-Make Time	t _{BBM}	$V_{S(all)} = V_{DA} = 1.5 \text{ V}$ see fig. 4		Room Full	2	63		ns
Enable Turn-On Time	t _{ON(ĒN)}	V _{AX} = 0 V, V _{S1} = 1.5 V (DG9- V _{AX} = 0 V, V _{S1b} = 1.5 V (DG9	408) 409)	Room Full		140	162 178	
Enable Turn-Off Time	$t_{OFF(\overline{EN})}$	see fig. 3	409)	Room Full		76	97 104	
Charge Injection ^e	Q	C _L = 1 nF, R _{GEN} = 0 , V _{GEN} =	: 0 V	Room		7		рC
Off Isolation ^{e, h}	OIRR	f = 100 kHz R. = 1 kO		Room		- 81		٩D
Crosstalk ^e	X _{TALK}	$f = 100 \text{ kHz}, R_L = 1 \text{ k}\Omega$		Room		- 85		dB
Source Off Capacitance ^e	C _{S(off)}	f = 1 MHz, V _S = 0 V, V _{EN} = 1.8 V	DG9408	Room		23		
Source On Capacitance	93(011)		DG9409	Room		25		pF
Drain Off Capacitance ^e	C _{D(off)}	f = 1 MHz, V _D = 0 V, V _{EN} = 1.8 V	DG9408	Room		230		
'	` ,		DG9409	Room Room		120 256		
Drain On Capacitance ^e	itance ^e $C_{D(on)}$ $f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{\overline{EN}} = 0 \text{ V}$ $DG9408$		Room		147			
Power Supplies						1		
Power Supply Current	l+	$V_{\overline{EN}} = V_A = 0 \text{ V or V} +$		Room			1	μΑ

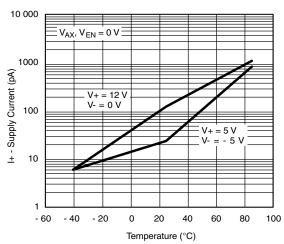

Notes:

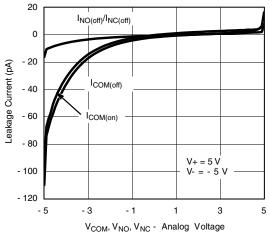
- a. Leakage parameters are guaranteed by worst case test condition and not subject to production test.
- b. Room = 25 °C, full = as determined by the operating temperature suffix.
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- e. Guaranteed by design, not subject to production test.
- f. V_{IN} = input voltage to perform proper function.
- g. $\Delta R_{DON} = R_{DON} Max R_{DON} Min$.
- h. Worst case isolation occurs on Channel 4 due to proximity to the drain pin.
- i. R_{DON} flatness is measured as the difference between the minimum and maximum measured values across a defined Analog signal.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

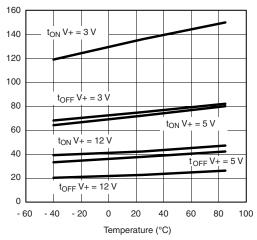

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


 $\rm R_{ON}$ vs. $\rm V_{COM}$ and Single Supply Voltage

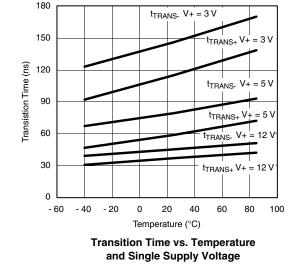

R_{ON} vs. Analog Voltage and Temperature

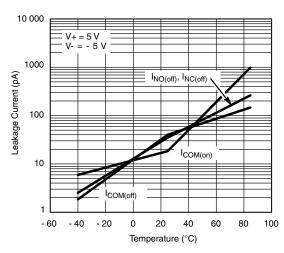

Leakage Current vs. Analog Voltage

R_{ON} vs. Analog Voltage and Temperature

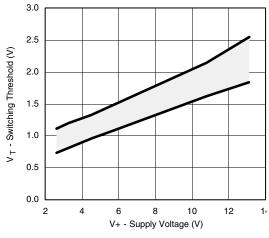


Supply Current vs. Temperature

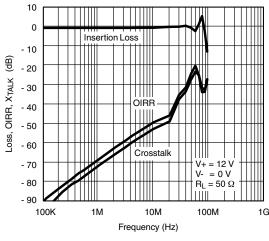


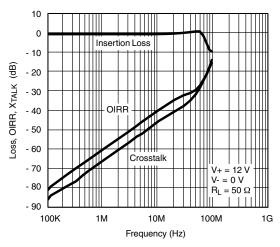

Leakage Current vs. Analog Voltage

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

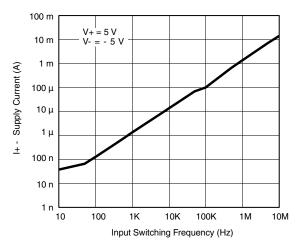


Switching Time vs. Temperature and Single Supply Voltage




Leakage Current vs. Temperature

Switching Threshold vs. Supply Voltage


Insertion Loss, Off Isolation and Crosstalk vs. Frequency (DG9408)

Insertion Loss, Off Isolation and Crosstalk vs. Frequency (DG9409)

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Supply Current vs. Input Switching Frequency

SCHEMATIC DIAGRAM (Typical Channel)

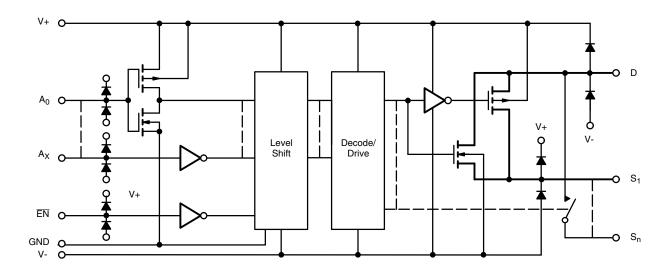


Figure 1.

TEST CIRCUITS

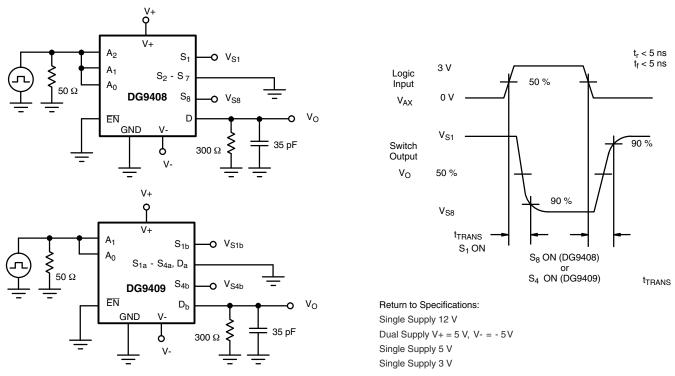


Figure 2. Transition Time

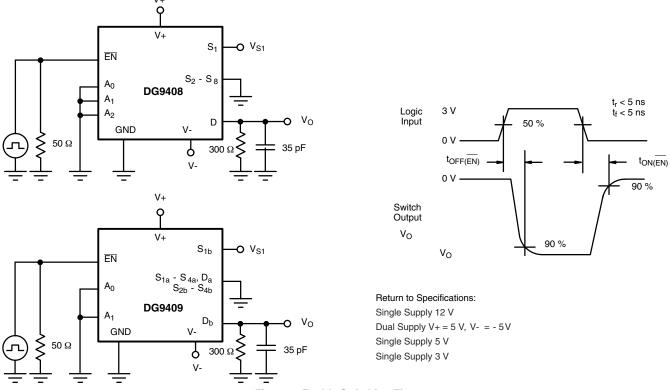
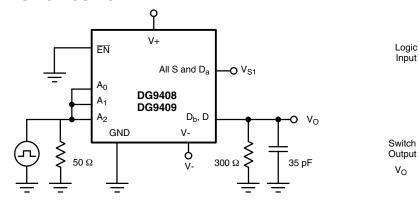
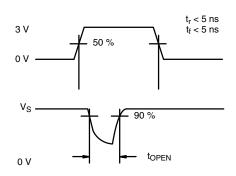




Figure 3. Enable Switching Time

TEST CIRCUITS

Return to Specifications: Single Supply 12 V Dual Supply V+ = 5 V, V- = -5 VSingle Supply 5 V Single Supply 3 V

Figure 4. Break-Before-Make Interval

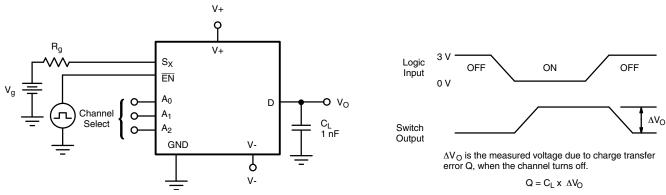


Figure 5. Charge Injection

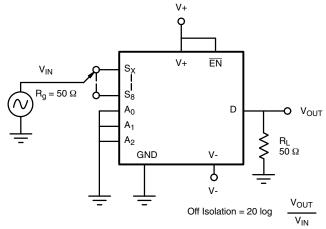


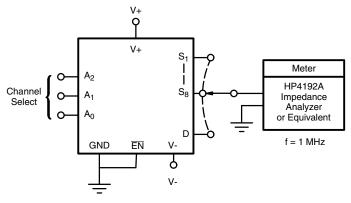
Figure 6. Off Isolation

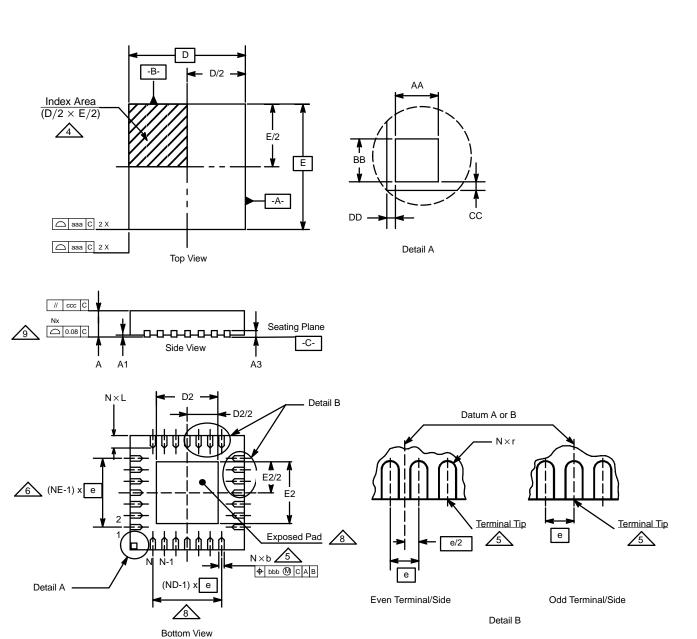
TEST CIRCUITS



Figure 7. Crosstalk

Figure 8. Insertion Loss




Figure 9. Source Drain Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?71870.

QFN-16 (4×4 mm)

JEDEC Part Number: MO-220

Document Number: 71921 www.vishay.com

Package Information

Vishay Siliconix

QFN-16 (4×4 mm)

JEDEC Part Number: MO-220

	MII	LLIMETER	RS*		INCHES		
Dim	Min	Nom	Max	Min	Nom	Max	Notes
Α	0.80	0.90	1.00	0.0315	0.0354	0.0394	
A1	0	0.02	0.05	0	0.0008	0.0020	
A3	-	0.20 Ref	-	-	0.0079	-	
AA	-	0.345	-	-	0.0136	-	
aaa	-	0.25	-	-	0.0098	-	
BB	-	0.345	-	-	0.0136	-	
b	0.23	0.30	0.38	0.0091	0.0118	0.0150	5
bbb	-	0.10	=	-	0.0039	-	
CC	-	0.18	-	-	0.0071	-	
CCC	-	0.10	-	-	0.0039	-	
D		4.00 BSC			0.1575 BSC		
D2	2.00	2.15	2.25	0.0787	0.0846	0.0886	
DD	-	0.18	-	-	0.0071	-	
Е		4.00 BSC			0.1575 BSC		
E2	2.00	2.15	2.25	0.0787	0.0846	0.0886	
е		0.65 BSC			0.0256 BSC		
L	0.45	0.55	0.65	0.0177	0.0217	0.0256	
N		16			16		3, 7
ND	-	4	-	-	4	-	6
NE	-	4	-	-	4	-	6
r	b(min)/2	-	-	b(min)/2	-	-	

^{*} Use millimeters as the primary measurement.

ECN: S-21437—Rev. A, 19-Aug-02 DWG: 5890

NOTES:

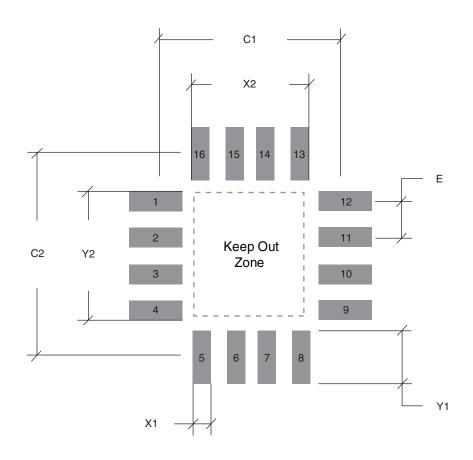
- Dimensioning and tolerancing conform to ASME Y14.5M-1994.
- All dimensions are in millimeters. All angels are in degrees.
- 3. N is the total number of terminals.

The terminal #1 identifier and terminal numbering convention shall conform to JESD 95-1 SPP-012. Details of terminal #1 identifier are optional, but must be located within the zone indicated. The terminal #1 identifier may be either a molded or marked feature. The X and Y dimension will vary according to lead counts.

 $\sqrt{5.}$ Dimension b applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from the terminal tip.

6 ND and NE refer to the number of terminals on the D and E side respectively.

Depopulation is possible in a symmetrical fashion.


 $\sqrt{8}$ Variation HHD is shown for illustration only.

9. Coplanarity applies to the exposed heat sink slug as well as the terminals.

www.vishay.com Document Number: 71921 19-Aug-02

RECOMMENDED MINIMUM PADS FOR QFN-16 (4 x 4 MM BODY)

	Inches	Millimeters
C1	0.142	3.60
C2	0.142	3.60
E	0.026	0.65
X1	0.014	0.35
X2	0.089	2.25
Y1	0.037	0.95
Y2	0.089	2.25

Note:

QFN-16 (4 x 4) has an exposed center pad that must not come into contact with any metalized structure on the PCB. This area is considered a Keep Out Zone.

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

www.vishay.com Revision: 11-Mar-11